東京都立大学図書館

Multiscale Methods in Science and Engineering

edited by Bjorn Engquist, Olof Runborg, Per Lotstedt. -- Springer Berlin Heidelberg, 2005. -- (Lecture Notes in Computational Science and Engineering ; 44). w. <EB00009800>
登録タグ:
登録されているタグはありません
書誌URL:

書誌詳細

IDENT http://dx.doi.org/10.1007/b137594
標題および責任表示 Multiscale Methods in Science and Engineering / edited by Bjorn Engquist, Olof Runborg, Per Lotstedt
特定資料種別コード リモートファイル
出版・頒布事項 Berlin, Heidelberg : Springer Berlin Heidelberg , 2005
形態事項 XI, 289 p : online resource
巻号情報
ISBN 9783540264446
書誌構造リンク Lecture Notes in Computational Science and Engineering <> 44//a
内容著作注記 Multiscale Discontinuous Galerkin Methods for Elliptic Problems with Multiple Scales
内容著作注記 Discrete Network Approximation for Highly-Packed Composites with Irregular Geometry in Three Dimensions
内容著作注記 Adaptive Monte Carlo Algorithms for Stopped Diffusion
内容著作注記 The Heterogeneous Multi-Scale Method for Homogenization Problems
内容著作注記 A Coarsening Multigrid Method for Flow in Heterogeneous Porous Media
内容著作注記 On the Modeling of Small Geometric Features in Computational Electromagnetics
内容著作注記 Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows
内容著作注記 Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features
内容著作注記 Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems
内容著作注記 Multipole Solution of Electromagnetic Scattering Problems with Many, Parameter Dependent Incident Waves
内容著作注記 to Normal Multiresolution Approximation
内容著作注記 Combining the Gap-Tooth Scheme with Projective Integration: Patch Dynamics
内容著作注記 Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem
内容著作注記 Multiscale Homogenization of the Navier-Stokes Equation
内容著作注記 Numerical Simulations of the Dynamics of Fiber Suspensions
注記 Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering
学情ID 9783540253358
本文言語コード 英語
著者標目リンク Engquist, Bjorn <> editor
著者標目リンク Runborg, Olof <> editor
著者標目リンク Lotstedt, Per <> editor
著者標目リンク SpringerLink (Online service) <>
分類標目 DC23:519
件名標目等 Engineering
件名標目等 Computer mathematics
件名標目等 Mathematical models
件名標目等 Continuum physics
件名標目等 Applied mathematics
件名標目等 Engineering mathematics
件名標目等 Mechanical engineering
件名標目等 Engineering
件名標目等 Appl.Mathematics/Computational Methods of Engineering
件名標目等 Mathematical Modeling and Industrial Mathematics
件名標目等 Computational Science and Engineering
件名標目等 Computational Mathematics and Numerical Analysis
件名標目等 Mechanical Engineering
件名標目等 Classical Continuum Physics