IDENT
|
http://dx.doi.org/10.1007/b137594
|
標題および責任表示
|
Multiscale Methods in Science and Engineering / edited by Bjorn Engquist, Olof Runborg, Per Lotstedt
|
特定資料種別コード
|
リモートファイル
|
出版・頒布事項
|
Berlin, Heidelberg : Springer Berlin Heidelberg , 2005
|
形態事項
|
XI, 289 p : online resource
|
巻号情報
|
|
書誌構造リンク
|
Lecture Notes in Computational Science and Engineering <> 44//a
|
内容著作注記
|
Multiscale Discontinuous Galerkin Methods for Elliptic Problems with Multiple Scales
|
内容著作注記
|
Discrete Network Approximation for Highly-Packed Composites with Irregular Geometry in Three Dimensions
|
内容著作注記
|
Adaptive Monte Carlo Algorithms for Stopped Diffusion
|
内容著作注記
|
The Heterogeneous Multi-Scale Method for Homogenization Problems
|
内容著作注記
|
A Coarsening Multigrid Method for Flow in Heterogeneous Porous Media
|
内容著作注記
|
On the Modeling of Small Geometric Features in Computational Electromagnetics
|
内容著作注記
|
Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows
|
内容著作注記
|
Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features
|
内容著作注記
|
Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems
|
内容著作注記
|
Multipole Solution of Electromagnetic Scattering Problems with Many, Parameter Dependent Incident Waves
|
内容著作注記
|
to Normal Multiresolution Approximation
|
内容著作注記
|
Combining the Gap-Tooth Scheme with Projective Integration: Patch Dynamics
|
内容著作注記
|
Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem
|
内容著作注記
|
Multiscale Homogenization of the Navier-Stokes Equation
|
内容著作注記
|
Numerical Simulations of the Dynamics of Fiber Suspensions
|
注記
|
Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering
|
学情ID
|
9783540253358
|
本文言語コード
|
英語
|
著者標目リンク
|
Engquist, Bjorn <> editor
|
著者標目リンク
|
Runborg, Olof <> editor
|
著者標目リンク
|
Lotstedt, Per <> editor
|
著者標目リンク
|
SpringerLink (Online service) <>
|
分類標目
|
DC23:519
|
件名標目等
|
Engineering
|
件名標目等
|
Computer mathematics
|
件名標目等
|
Mathematical models
|
件名標目等
|
Continuum physics
|
件名標目等
|
Applied mathematics
|
件名標目等
|
Engineering mathematics
|
件名標目等
|
Mechanical engineering
|
件名標目等
|
Engineering
|
件名標目等
|
Appl.Mathematics/Computational Methods of Engineering
|
件名標目等
|
Mathematical Modeling and Industrial Mathematics
|
件名標目等
|
Computational Science and Engineering
|
件名標目等
|
Computational Mathematics and Numerical Analysis
|
件名標目等
|
Mechanical Engineering
|
件名標目等
|
Classical Continuum Physics
|