東京都立大学図書館

Methods of Bifurcation Theory

by Shui-Nee Chow, Jack K. Hale. -- Springer New York, 1982. -- (Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 251). w. <EB00006066>
登録タグ:
登録されているタグはありません
書誌URL:

書誌詳細

IDENT http://dx.doi.org/10.1007/978-1-4613-8159-4
標題および責任表示 Methods of Bifurcation Theory / by Shui-Nee Chow, Jack K. Hale
特定資料種別コード リモートファイル
出版・頒布事項 New York, NY : Springer New York , 1982
形態事項 XV, 525 p : online resource
巻号情報
ISBN 9781461381594
書誌構造リンク Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics <> 251//a
内容著作注記 1 Introduction and Examples
内容著作注記 1.1. Definition of Bifurcation Surface
内容著作注記 1.2. Examples with One Parameter
内容著作注記 1.3. The Euler-Bernoulli Rod
内容著作注記 1.4. The Hopf Bifurcation
内容著作注記 1.5. Some Generic Examples
内容著作注記 1.6. Dynamic Bifurcation
内容著作注記 2 Elements of Nonlinear Analysis
内容著作注記 2.1. Calculus
内容著作注記 2.2. Local Implicit Function Theorem
内容著作注記 2.3. Global Implicit Function Theorem
内容著作注記 2.4. Alternative Methods
内容著作注記 2.5. Embedding Theorems
内容著作注記 2.6. Weierstrass Preparation Theorem
内容著作注記 2.7. The Malgrange Preparation Theorem
内容著作注記 2.8. Newton Polygon
内容著作注記 2.9. Manifolds and Transversality
内容著作注記 2.10. Sard's Theorem
内容著作注記 2.11. Topological Degree, Index of a Vector Field and Fixed Point Index
内容著作注記 2.12. Ljusternik-Schnirelman Theory in ?n
内容著作注記 2.13. Bibliographical Notes
内容著作注記 3 Applications of the Implicit Function Theorem
内容著作注記 3.1. Existence of Solutions of Ordinary Differential Equations
内容著作注記 3.2. Admissible Classes in Ordinary Differential Equations
内容著作注記 3.3. Global Boundary Value Problems for Ordinary Differential Equations
内容著作注記 3.4. Hopf Bifurcation Theorem
内容著作注記 3.5. Liapunov Center Theorem
内容著作注記 3.6. Saddle Point Property
内容著作注記 3.7. The Hartman-Grobman Theorem
内容著作注記 3.8. An Elliptic Problem
内容著作注記 3.9. A Hyperbolic Problem
内容著作注記 3.10. Bibliographical Notes
内容著作注記 4 Variational Method
内容著作注記 4.1. Introduction
内容著作注記 4.2. Weak Lower Semicontinuity
内容著作注記 4.3. Monotone Operators
内容著作注記 4.4. Condition (C)
内容著作注記 4.5. Minimax Principle in Banach Spaces
内容著作注記 4.6. Mountain Pass Theorem
内容著作注記 4.7. Periodic Solutions of a Semilinear Wave Equation
内容著作注記 4.8. Ljusternik-Schnirelman Theory on Banach Manifolds
内容著作注記 4.9. Stationary Waves
内容著作注記 4.10. The Krasnoselski Theorems
内容著作注記 4.11. Variational Property of Bifurcation Equation
内容著作注記 4.12. Liapunov Center Theorem at Resonance
内容著作注記 4.13. Bibliographical Notes
内容著作注記 5 The Linear Approximation and Bifurcation
内容著作注記 5.1. Introduction
内容著作注記 5.2. Eigenvalues of B
内容著作注記 5.3. Eigenvalues of (B, A)
内容著作注記 5.4. Eigenvalues of (B, A1, ... , AN)
内容著作注記 5.5. Bifurcation from a Simple Eigenvalue
内容著作注記 5.6. Applications of Simple Eigenvalues
内容著作注記 5.7. Bifurcation Based on the Linear Equation
内容著作注記 5.8. Global Bifurcation
内容著作注記 5.9. An Application.to a Delay Differential Equation
内容著作注記 5.10. Bibliographical Notes
内容著作注記 6 Bifurcation with One Dimensional Null Space
内容著作注記 6.1. Introduction
内容著作注記 6.2. Quadratic Nonlinearities
内容著作注記 6.3. Applications
内容著作注記 6.4. Cubic Nonlinearities
内容著作注記 6.5. Applications
内容著作注記 6.6. Bifurcation from Known Solutions
内容著作注記 6.7. Effects of Symmetry
内容著作注記 6.8. Universal Unfoldings
内容著作注記 6.9. Bibliographical Notes
内容著作注記 7 Bifurcation with Higher Dimensional Null Spaces
内容著作注記 7.1. Introduction
内容著作注記 7.2. The Quadratic Revisited
内容著作注記 7.3. Quadratic Nonlinearities I
内容著作注記 7.4. Quadratic Nonlinearities II
内容著作注記 7.5. Cubic Nonlinearities I
内容著作注記 7.6. Cubic Nonlinearities II
内容著作注記 7.7. Cubic Nonlinearities III
内容著作注記 7.8. Bibliographical Notes
内容著作注記 8 Some Applications
内容著作注記 8.1. Introduction
内容著作注記 8.2. The von Karman Equations
内容著作注記 8.3. The Linearized Problem
内容著作注記 8.4. Noncritical Length
内容著作注記 8.5. Critical Length
内容著作注記 8.6. An Example in Chemical Reactions
内容著作注記 8.7. The Duffing Equation with Harmonic Forcing
内容著作注記 8.8. Bibliographical Notes
内容著作注記 9 Bifurcation near Equilibrium
内容著作注記 9.1. Introduction
内容著作注記 9.2. Center Manifolds
内容著作注記 9.3. Autonomous Case
内容著作注記 9.4. Periodic Case
内容著作注記 9.5. Bifurcation from a Focus
内容著作注記 9.6. Bibliographical Notes
内容著作注記 10 Bifurcation of Autonomous Planar Equations
内容著作注記 10.1. Introduction
内容著作注記 10.2. Periodic Orbit
内容著作注記 10.3. Homoclinic Orbit
内容著作注記 10.4. Closed Curve with a Saddle-Node
内容著作注記 10.5. Remarks on Structural Stability and Bifurcation
内容著作注記 10.6. Remarks on Infinite Dimensional Systems and Turbulence
内容著作注記 10.7. Bibliographical Notes
内容著作注記 11 Bifurcation of Periodic Planar Equations
内容著作注記 11.1. Introduction
内容著作注記 11.2. Periodic Orbit-Subharmonics
内容著作注記 11.3. Homoclinic Orbit
内容著作注記 11.4. Subharmonics and Homoclinic Points
内容著作注記 11.5. Abstract Bifurcation near a Closed Curve
内容著作注記 11.6. Bibliographical Notes
内容著作注記 12 Normal Forms and Invariant Manifolds
内容著作注記 12.1. Introduction
内容著作注記 12.2. Transformation Theory and Normal Forms
内容著作注記 12.3. More on Normal Forms
内容著作注記 12.4. The Method of Averaging
内容著作注記 12.5. Integral Manifolds and Invariant Tori
内容著作注記 12.6. Bifurcation from a Periodic Orbit to a Torus
内容著作注記 12.7. Bifurcation of Tori
内容著作注記 12.8. Bibliographical Notes
内容著作注記 13 Higher Order Bifurcation near Equilibrium
内容著作注記 13.1. Introduction
内容著作注記 13.2. Two Zero Roots I
内容著作注記 13.3. Two Zero Roots II
内容著作注記 13.4. Two Zero Roots III
内容著作注記 13.5. Several Pure Imaginary Eigenvalues
内容著作注記 13.6. Bibliographical Notes
内容著作注記 14 Perturbation of Spectra of Linear Operators
内容著作注記 14.1. Introduction
内容著作注記 14.2. Continuity Properties of the Spectrum
内容著作注記 14.3. Simple Eigenvalues
内容著作注記 14.4. Multiple Normal Eigenvalues -- 14.5. Self-adjoint Operators -- 14.6. Bibliographical Notes
注記 An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate- rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable
学情ID 9781461381617
本文言語コード 英語
著者標目リンク *Chow, Shui-Nee <> author
著者標目リンク Hale, Jack K. <> author
著者標目リンク SpringerLink (Online service) <>
分類標目 DC23:515
件名標目等 Mathematics
件名標目等 Mathematical analysis
件名標目等 Analysis (Mathematics)
件名標目等 Mathematics
件名標目等 Analysis