IDENT
|
http://dx.doi.org/10.1007/978-1-4613-8159-4
|
標題および責任表示
|
Methods of Bifurcation Theory / by Shui-Nee Chow, Jack K. Hale
|
特定資料種別コード
|
リモートファイル
|
出版・頒布事項
|
New York, NY : Springer New York , 1982
|
形態事項
|
XV, 525 p : online resource
|
巻号情報
|
|
書誌構造リンク
|
Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics <> 251//a
|
内容著作注記
|
1 Introduction and Examples
|
内容著作注記
|
1.1. Definition of Bifurcation Surface
|
内容著作注記
|
1.2. Examples with One Parameter
|
内容著作注記
|
1.3. The Euler-Bernoulli Rod
|
内容著作注記
|
1.4. The Hopf Bifurcation
|
内容著作注記
|
1.5. Some Generic Examples
|
内容著作注記
|
1.6. Dynamic Bifurcation
|
内容著作注記
|
2 Elements of Nonlinear Analysis
|
内容著作注記
|
2.1. Calculus
|
内容著作注記
|
2.2. Local Implicit Function Theorem
|
内容著作注記
|
2.3. Global Implicit Function Theorem
|
内容著作注記
|
2.4. Alternative Methods
|
内容著作注記
|
2.5. Embedding Theorems
|
内容著作注記
|
2.6. Weierstrass Preparation Theorem
|
内容著作注記
|
2.7. The Malgrange Preparation Theorem
|
内容著作注記
|
2.8. Newton Polygon
|
内容著作注記
|
2.9. Manifolds and Transversality
|
内容著作注記
|
2.10. Sard's Theorem
|
内容著作注記
|
2.11. Topological Degree, Index of a Vector Field and Fixed Point Index
|
内容著作注記
|
2.12. Ljusternik-Schnirelman Theory in ?n
|
内容著作注記
|
2.13. Bibliographical Notes
|
内容著作注記
|
3 Applications of the Implicit Function Theorem
|
内容著作注記
|
3.1. Existence of Solutions of Ordinary Differential Equations
|
内容著作注記
|
3.2. Admissible Classes in Ordinary Differential Equations
|
内容著作注記
|
3.3. Global Boundary Value Problems for Ordinary Differential Equations
|
内容著作注記
|
3.4. Hopf Bifurcation Theorem
|
内容著作注記
|
3.5. Liapunov Center Theorem
|
内容著作注記
|
3.6. Saddle Point Property
|
内容著作注記
|
3.7. The Hartman-Grobman Theorem
|
内容著作注記
|
3.8. An Elliptic Problem
|
内容著作注記
|
3.9. A Hyperbolic Problem
|
内容著作注記
|
3.10. Bibliographical Notes
|
内容著作注記
|
4 Variational Method
|
内容著作注記
|
4.1. Introduction
|
内容著作注記
|
4.2. Weak Lower Semicontinuity
|
内容著作注記
|
4.3. Monotone Operators
|
内容著作注記
|
4.4. Condition (C)
|
内容著作注記
|
4.5. Minimax Principle in Banach Spaces
|
内容著作注記
|
4.6. Mountain Pass Theorem
|
内容著作注記
|
4.7. Periodic Solutions of a Semilinear Wave Equation
|
内容著作注記
|
4.8. Ljusternik-Schnirelman Theory on Banach Manifolds
|
内容著作注記
|
4.9. Stationary Waves
|
内容著作注記
|
4.10. The Krasnoselski Theorems
|
内容著作注記
|
4.11. Variational Property of Bifurcation Equation
|
内容著作注記
|
4.12. Liapunov Center Theorem at Resonance
|
内容著作注記
|
4.13. Bibliographical Notes
|
内容著作注記
|
5 The Linear Approximation and Bifurcation
|
内容著作注記
|
5.1. Introduction
|
内容著作注記
|
5.2. Eigenvalues of B
|
内容著作注記
|
5.3. Eigenvalues of (B, A)
|
内容著作注記
|
5.4. Eigenvalues of (B, A1, ... , AN)
|
内容著作注記
|
5.5. Bifurcation from a Simple Eigenvalue
|
内容著作注記
|
5.6. Applications of Simple Eigenvalues
|
内容著作注記
|
5.7. Bifurcation Based on the Linear Equation
|
内容著作注記
|
5.8. Global Bifurcation
|
内容著作注記
|
5.9. An Application.to a Delay Differential Equation
|
内容著作注記
|
5.10. Bibliographical Notes
|
内容著作注記
|
6 Bifurcation with One Dimensional Null Space
|
内容著作注記
|
6.1. Introduction
|
内容著作注記
|
6.2. Quadratic Nonlinearities
|
内容著作注記
|
6.3. Applications
|
内容著作注記
|
6.4. Cubic Nonlinearities
|
内容著作注記
|
6.5. Applications
|
内容著作注記
|
6.6. Bifurcation from Known Solutions
|
内容著作注記
|
6.7. Effects of Symmetry
|
内容著作注記
|
6.8. Universal Unfoldings
|
内容著作注記
|
6.9. Bibliographical Notes
|
内容著作注記
|
7 Bifurcation with Higher Dimensional Null Spaces
|
内容著作注記
|
7.1. Introduction
|
内容著作注記
|
7.2. The Quadratic Revisited
|
内容著作注記
|
7.3. Quadratic Nonlinearities I
|
内容著作注記
|
7.4. Quadratic Nonlinearities II
|
内容著作注記
|
7.5. Cubic Nonlinearities I
|
内容著作注記
|
7.6. Cubic Nonlinearities II
|
内容著作注記
|
7.7. Cubic Nonlinearities III
|
内容著作注記
|
7.8. Bibliographical Notes
|
内容著作注記
|
8 Some Applications
|
内容著作注記
|
8.1. Introduction
|
内容著作注記
|
8.2. The von Karman Equations
|
内容著作注記
|
8.3. The Linearized Problem
|
内容著作注記
|
8.4. Noncritical Length
|
内容著作注記
|
8.5. Critical Length
|
内容著作注記
|
8.6. An Example in Chemical Reactions
|
内容著作注記
|
8.7. The Duffing Equation with Harmonic Forcing
|
内容著作注記
|
8.8. Bibliographical Notes
|
内容著作注記
|
9 Bifurcation near Equilibrium
|
内容著作注記
|
9.1. Introduction
|
内容著作注記
|
9.2. Center Manifolds
|
内容著作注記
|
9.3. Autonomous Case
|
内容著作注記
|
9.4. Periodic Case
|
内容著作注記
|
9.5. Bifurcation from a Focus
|
内容著作注記
|
9.6. Bibliographical Notes
|
内容著作注記
|
10 Bifurcation of Autonomous Planar Equations
|
内容著作注記
|
10.1. Introduction
|
内容著作注記
|
10.2. Periodic Orbit
|
内容著作注記
|
10.3. Homoclinic Orbit
|
内容著作注記
|
10.4. Closed Curve with a Saddle-Node
|
内容著作注記
|
10.5. Remarks on Structural Stability and Bifurcation
|
内容著作注記
|
10.6. Remarks on Infinite Dimensional Systems and Turbulence
|
内容著作注記
|
10.7. Bibliographical Notes
|
内容著作注記
|
11 Bifurcation of Periodic Planar Equations
|
内容著作注記
|
11.1. Introduction
|
内容著作注記
|
11.2. Periodic Orbit-Subharmonics
|
内容著作注記
|
11.3. Homoclinic Orbit
|
内容著作注記
|
11.4. Subharmonics and Homoclinic Points
|
内容著作注記
|
11.5. Abstract Bifurcation near a Closed Curve
|
内容著作注記
|
11.6. Bibliographical Notes
|
内容著作注記
|
12 Normal Forms and Invariant Manifolds
|
内容著作注記
|
12.1. Introduction
|
内容著作注記
|
12.2. Transformation Theory and Normal Forms
|
内容著作注記
|
12.3. More on Normal Forms
|
内容著作注記
|
12.4. The Method of Averaging
|
内容著作注記
|
12.5. Integral Manifolds and Invariant Tori
|
内容著作注記
|
12.6. Bifurcation from a Periodic Orbit to a Torus
|
内容著作注記
|
12.7. Bifurcation of Tori
|
内容著作注記
|
12.8. Bibliographical Notes
|
内容著作注記
|
13 Higher Order Bifurcation near Equilibrium
|
内容著作注記
|
13.1. Introduction
|
内容著作注記
|
13.2. Two Zero Roots I
|
内容著作注記
|
13.3. Two Zero Roots II
|
内容著作注記
|
13.4. Two Zero Roots III
|
内容著作注記
|
13.5. Several Pure Imaginary Eigenvalues
|
内容著作注記
|
13.6. Bibliographical Notes
|
内容著作注記
|
14 Perturbation of Spectra of Linear Operators
|
内容著作注記
|
14.1. Introduction
|
内容著作注記
|
14.2. Continuity Properties of the Spectrum
|
内容著作注記
|
14.3. Simple Eigenvalues
|
内容著作注記
|
14.4. Multiple Normal Eigenvalues -- 14.5. Self-adjoint Operators -- 14.6. Bibliographical Notes
|
注記
|
An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate- rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable
|
学情ID
|
9781461381617
|
本文言語コード
|
英語
|
著者標目リンク
|
*Chow, Shui-Nee <> author
|
著者標目リンク
|
Hale, Jack K. <> author
|
著者標目リンク
|
SpringerLink (Online service) <>
|
分類標目
|
DC23:515
|
件名標目等
|
Mathematics
|
件名標目等
|
Mathematical analysis
|
件名標目等
|
Analysis (Mathematics)
|
件名標目等
|
Mathematics
|
件名標目等
|
Analysis
|